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Control of chaos by oscillating feedback

H. G. Schuster* and M. B. Stemmler
Computation and Neural Systems Program, California Institute of Technology 139-74, Pasadena, California 91125

~Received 16 August 1996; revised manuscript received 31 March 1997!

Parametric feedback control of chaos relies on detailed knowledge of the locations of unstable periodic
orbits. We show that unstable periodic orbits of dynamical systems with unknown locations but known

periodicity t can be stabilized by an oscillating feedback term proportional to« t (xW t2xW t2t), wherexW t is the
location of the trajectory at timet and« t is periodic in time. Periodic feedback overcomes the limitations of
Giona’s theorem@Nonlinearity4, 911~1991!#, which states that constant feedback~i.e., a time-independent«)
can stabilize an unstable periodic orbitonly if the stability matrix has no positive eigenvalues greater than
unity. As an application of oscillating feedback, we use it to stabilize the memory patterns in an associative
memory„Hopfield@Proc. Natl. Acad. Sci. USA79, 2554~1982!; 81, 3088~1984!#… network, thereby enhancing
the total capacity of the memory device. We extend our method to high-dimensional systems described by
differential equations; in this framework, it is possible to stabilize the spatiotemporal chaos generated by the
Kuramoto-Sivashinsky equation@G. J. Sivashinsky and D. M. Michelson, Prog. Theor. Phys.63, 2122~1980!#.
@S1063-651X~97!10911-4#

PACS number~s!: 05.45.1b, 47.20.2k
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I. INTRODUCTION

Many nonlinear dynamical systems display chaos@1#. Re-
cently, a general approach@2# to controlling chaos in physi-
cal systems has been proposed that is based on the exis
of unstable periodic orbits within the strange attractor. T
original technique, due to Ott, Grebogi, and Yorke~OGY!,
relies on the local linearization of the Poincare´ map near an
unstable periodic orbit@2#. Once the local map is known, on
can apply linear feedback control to stabilize the orbit.
principle, the method of OGY is applicable to any physic
system as long as the iterates of the Poincare´ map can be
obtained@3#. Recently, Hunt@4# has demonstrated exper
mentally that changing the control parameter of the cha
system in proportion to the difference between the des
orbit and the actual trajectory is sufficient to achieve rob
control. This form of parametric feedback control has be
applied to several experimental systems@5# and underpinned
theoretically@6#. However, in order to apply Hunt’s method
it is necessary to know the location of the orbit that o
wants to stabilize or, if this is not the case, one could cho
an arbitrary point on the attractor and stabilize the lea
unstable periodic orbit in its vicinity. In this article, we wi
present a method for chaos control that is as simple as Hu
method but does not require knowledge of the orbit’s lo
tion. Instead, the method will stabilize orbits of a prescrib
periodicity. This approach is of some theoretical and pra
cal importance for the following reasons.

~i! The set of unstable periodic orbits is dense in the Po
caré map of a chaotic dynamical system. The locations
these orbits, starting with unstable cycles of period 2, tr
out the skeleton of the chaotic attractor. The control meth
described here allows one to find experimentally all unsta
periodic orbits of a given periodicity without any prio

*Permanent address: Institut fu¨r Theoretische Physik, Universita¨t
Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany.
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knowledge of the chaotic system.
~ii ! The method generalizes easily to higher-dimensio

systems and can be applied to dynamical systems that ar
intrinsically chaotic but possess unstable fixed points i
which one wants to trap the system. One example of a n
chaotic system with unstable fixed points is the Hopfie
model @7# of associative memory, in which the fixed poin
of the dynamical system correspond to stored memory
terns. If the number of memory patterns is small, the traj
tory of the system will move from an arbitrary input patte
to the closest fixed point, which is the best match to
‘‘memory.’’ Attempts to store too many memory patterns a
thwarted by the fixed points~or memory patterns! becoming
unstable. Our method stabilizes the fixed point closest to
current trajectory, thereby increasing the number of patte
that can be stored and retrieved.

~iii ! Our method, which will first be introduced for dy
namical systems described by maps, can be extended to
tems described by differential equations. We will demo
strate that the spatiotemporal chaos generated by
Kuramoto-Sivashinsky equation@8#, which describes the
fluctuations in the height of a fluid film moving on an in
clined plane under the influence of gravity, can be ‘‘tame
by periodic feedback.

As we will see in the following sections, our method co
sists of applying delayed feedback control to the system
the context of chaos control, delayed feedback was origin
proposed by Pyragas@9# and has been applied to contr
chaos in neodymium-doped lasers@10#. The different point
of our method is to overcome an important limitation th
occurs for delayed feedback control. As proved rigorously
Giona @11#, delayed feedback control will only work~for
systems described by Poincare´ maps! if the local stability
matrix of the unstable periodic orbit that one wants to sta
lize has only negative unstable eigenvalues. Similar rest
tions hold for systems described by differential equations
will be shown that these restrictions can be overcome
modulating the feedback control periodically.
6410 © 1997 The American Physical Society
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56 6411CONTROL OF CHAOS BY OSCILLATING FEEDBACK
In the following, we will first show how our method sta
bilizes unstable fixed points in one-dimensional maps~Sec.
II !. Then we will apply the method to the Hopfield mod
~Sec. III and the Appendix!. In Sec. IV, we will introduce
periodic feedback for higher-dimensional systems descri
by differential equations and demonstrate the application
periodically modulated, delayed feedback control to
Kuramoto-Sivashinsky equation of fluid dynamics. We co
clude with a brief discussion in Sec. V.

II. STABILIZATION OF UNSTABLE FIXED POINTS
IN SYSTEMS DESCRIBED BY MAPS

We start from a one-dimensional map

xt115 f ~xt!, ~2.1!

wheret is the discrete time, and linearize it in the vicinity o
an unstable fixed pointx* 5 f (x* ). This leads to

xt115lxt, ~2.2!

where l5(d/dx) f (x* ) such thatulu.1. We can assume
without restricting our arguments thatx* 50. In order to
stabilize the fixed point, we add a perturbation«(xt2xt21)
to the map of Eq.~2.1!, which represents a delayed feedba
term that does not change the location of the fixed point
influences its stability, as has been observed by Pyragas@9#.
This modifies Eq.~2.1! to

xt115 f @xt1«~xt2xt21!#. ~2.3!

Linearization aroundx* 50 leads to

xt115lxt1«l~xt2xt21!. ~2.4!

Giona @11# proved that the addition of delay terms
arbitrary order to a map can only stabilize the fixed po
only if l,0. An intuitive picture of why this is so can b
drawn as follows: If the sign ofxt alternates on successiv
iterates becausel,0, then the stabilizing term«(xt

2xt21) vanishes less rapidly and hence has more effec
the stability ofx* , than forl.0, in which case bothxt and
xt21 converge with the same sign tox* . If we make the
ansatz x;g t in Eq. ~2.4!, we obtain g65 1

2 $l(11«)
6A@l(11«)#224«l%. The requirement thatugu,1 leads
to the stability region delineated by the solid lines in Fig.
The stability region is confined tol,1, in agreement with
Giona’s theorem.@The delay term stabilizes the fixed poi
for l<21; for 21,l,1 the fixed point in Eq.~2.4! is
already stable for«50.#

If we want to stabilize also fixed points withl.1, we
must avoid a too rapid decay of the difference«(xt2xt21).
This could be achieved by making« time dependent. The
simplest choice« t50 for t odd and« t5«Þ0 for t even will
allow stabilization of both positive and negativel @12#. With
this, Eq.~2.4! becomes

xt115lxt, ~2.5a!

xt125lxt111l«~xt112xt!, ~2.5b!

which can be rewritten as
d
of
e
-

t

t

n

.

xt115lxt, ~2.6a!

xt125l@l1«~l21!#xt. ~2.6b!

As shown in Fig. 2,xt jumps between two linear maps wit
different slopes. The slope of the lower branch could, by
appropriate choice of«, always be made small enough
ensure the stability ofx* 50. This means formally that the
effective slopel@l1«(l21)# in the mapxt125gxt could
always be made smaller than unity. The condition for sta
ity ugu,1 yields for the boundariesg6561

«152~11l!/l, «252~11l2!/@l~l21!#.
~2.7!

The stability regionugu,1 is shown as the shaded are
~with boundaries«6) in Fig. 1. With oscillatory delayed
feedback, the stability region extends into the region of po
tive l.1. A single value of« can stabilize a range of un
stable eigenvalues, which will become important for hig
dimensional sytems where we want to stabilize a wh
spectrum of unstablel values by a single control paramet
@13#.

To stabilize higher-order unstable fixed points, one c
add to the mapxt115lxt a delayed feedback term« t(xt

2xt2t), where « t50 for 0<t,t and « t5« for t5t. In
analogy to Eq.~2.6!, we obtainxt1t115gxt with g5lt@l
1«(l21)#. A cycle of periodt is stable ifugu,1. Stabili-

FIG. 1. Stability region in the«,l plane for periodic~shaded
area! and nonperiodic~area delineated by the solid lines! feedback
control.

FIG. 2. For periodic feedback control the trajectory~dotted line!
approaches the fixed point by jumping between two linear maps~a!
xt115lxt and ~b! xt125(l1l«2«)xt11.
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6412 56H. G. SCHUSTER AND M. B. STEMMLER
zation can always be achieved with an appropriate choic
«, as for simple fixed points, which have the periodicityt
51.

As a straightforward application of the method, we u
periodic feedback to stabilize the unstable fixed point of
twofold iterated logistic map, which could not be stabiliz
by constant delay terms because of Giona’s theorem. Fig
3 shows the fraction of iterates that, after the starting poinx0

had been injected randomly into the intervalI 5x* 61022,
remained withinI . There exists a finite range of« values that
stabilize the fixed point completely. For unmodulated fee
back the fraction of iterates that remain in the intervalI is
below 1

III. STABILIZATION OF PATTERNS
IN THE HOPFIELD MODEL

The symmetric Hopfield model@7# is a variation on the
Ising model for simple magents withi 51, . . . ,N graded
spins Si connected by an interaction matrixJi j

5(1/N)(mj i
mj j

m . The matrixJi j storesm51, . . . ,p random
patterns j i

m561 and is by construction symmetricJi j

5Jji . The patternsjWm are known as memory patterns.
Starting from an arbitrary initial patternSW 0 ~with 21

<Si
0<1), the Hopfield model evolves according to the d

namical rules@14#

Si
t115tanh@bhi

t#, ~3.1!

where

hi
t5

1

N(
j 51

N

Ji j Sj
t ~3.2!

is the local ‘‘magnetic’’ field for thei th spin, generated by
all other spins through the interaction matrixJi j . At each
time step of the dynamics, the spinSi

t will tend to align itself
parallel to the local field. In fact, in the limit ofb→`, Eq.
~3.1! becomes

Si
t115sgn@hi

t# ~3.3!

FIG. 3. Oscillatory delayed feedback control of the twofold
erated logistic mapf 2(x)5r 2x2(12x)2 for r 53.8. Displayed in
the graph is the fractionF of iterates that remain after a rando
injection of an initial point into the intervalI 5x* 61022 around
the fixed pointx* 512(1/r ) after ten iterations of the mapf 2. The
slope of the mapf 2 at the fixed pointx* 50.737 isl53.24; since
the slope is greater than unity, the map cannot be controlled
constant delayed feedback. Within the shaded area, in agree
with Eq. ~2.7!, the map controlled by oscillatory delayed feedba
is absolutely stable.
of
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and the alignment ofSi
t11 to the local field becomes perfec

Only a nonzero temperature, entering through the factob
5(1/T) in Eq. ~3.1!, will counteract the tendency of spins t
align perfectly.

The crucial feature of the symmetric Hopfield model
that it admits a Lyapunov function, or generalized ener
function, that governs the dynamics@7#. Continuing the anal-
ogy to a magnet, the alignment of spins parallel to their lo
field lowers the total energy of the Hopfield model

Lt52 (
i , j 51

N

Ji j Si
tSj

t ~3.4!

with each time step, such thatLt11<Lt. In the long-time
limit, the system moves to a stable state with minimal e
ergy. If the initial state of the spinsSW 0 is close to one of the
stored patterns, sayjW1, then the system state will move to
wards the stored pattern. To illustrate, we consider the s
plest case, wherejW1 is the only pattern stored in the networ
and thusJi j 5(1/N)j i

1j j
1 . In the zero-temperature limit

Lt52 (
i , j 51

N

Ji j Si
tSj

t

52
1

N (
i , j 51

N

j i
1j j

1Si
tSj

t52
1

NF(
i 51

N

j i
1Si

tG2

52
1

N
~jW1

•SW t!2

~3.5!

and we can see directly that the minimal energy is achie
if the vectorSW t5(S1

t , . . . ,SN
t ) points parallel~or antiparal-

lel! to the patternjW1. In other words, the minimum-energ
configuration limt→`Lt corresponds to a stored pattern
memory of the network. Lyapunov functions also exist f
Hopfield models at nonzero temperatures.

Generalizing Eq.~2.3! to N dimensions, we introduce de
layed feedback into the Hopfield model as

Si
t115tanhFb(

j 51

N

Ji j Sj
t G , ~3.6a!

Si
t125tanhFb(

j 51

N

Ji j @~11«!Sj
t112«Sj

t #G , ~3.6b!

whereb is the inverse temperature. As in Eq.~2.5!, the de-
layed feedback term has been made oscillatory.

In the original Hopfield model, the fact thatLt11,Lt im-
plies that only simple fixed points are allowed to exist. W
delayed feedback, stable two-cycles become possible in
Hopfield model@15#, in addition to the usual stable fixe
points. To show that the oscillating delay term can stabil
two-cycles, we construct a Lyapunov functionL for two-
cycles, following the seminal work of Amit@16#:

y
ent
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56 6413CONTROL OF CHAOS BY OSCILLATING FEEDBACK
L5(
i , j

Ji j Si
tF ~11«!Sj

t112
«

2
Sj

t G
2

1

b
~11«!(

i
lnFcoshS b(

j
Ji j Sj

t D G
2

1

b(
i

lnFcoshS b(
j

Ji j @~11«!Sj
t112«Sj

t # D G . ~3.7!

To get acquainted with the influence of the delay term
we first investigate the Hopfield model with only one stor
patternjW1. By introducing the overlapmt5(1/N)( ij i

1Si
t be-

tween the state vectorSW t and the patternjW1, the equations of
motion reduce to

mt115tanh~bmt!, ~3.8a!

mt125tanh$b@~11«!mt112«mt#% ~3.8b!

and the Lyapunov functionL becomes

L5~11«!mtanh~bm!2
«

2
m22

~11«!

b

3 ln@2cosh~bm!#2
1

b
ln„2cosh

3$b@~11«!tanh~bm!2«m#%…. ~3.9!

Figure 4 showsL for different values ofb and«. We note
that for high temperatures (b→0) the choice of a large
enough~negative! « will always stabilize a two-cycle: Fo
b!1, Eq. ~3.8a! yields mt115bmt and Eq.~3.8b! becomes
mt125tanh$b@b(11«)2«#mt%>tanh@b(2«)mt# for 2«@1.
This means that large~negative! « values lead to an effective
be f f5b(2«) that compensates for the small value of t
original b.

The use of the Hopfield model as an associative mem
is limited by the number of patternsjWm that can be stored an
retrieved relative to the total number of spins. The ratioa
5p/N is commonly known as the capacity, wherep is the
number of memory patterns andN the number of spins. At
zero temperature (b→`), the original Hopfield model has
capacity ofa50.138 in the limit asN→`. Storing a number
of patterns greater thanp5aN has catastrophic effects: Th
memory patterns become unstable fixed points, rendering

FIG. 4. Lyapunov functionL(m)of the Hopfield model with one
stored pattern. The dotted lines correspond toL(m) without feed-
back for b50.5. The full lines correspond toL(m) for the same
values ofb after periodic feedback with«525 has been switched
on.
,

ry

he

associative memory device useless. In this case, the Hop
model evolves towards an unintelligible superposition
memory patterns~a spin-glass state! or to a paramagnetic
state which has, on average, no overlap with any stored
tern jWm.

Since delayed feedback stabilizes unstable fixed poi
one might expect that such feedback could increase the
pacity of the Hopfield model. The net effect of consta
nonoscillatory delay terms in the Hopfield model is
weakly stabilize stored patterns@17#. But how does oscillat-
ing delayed feedback change the capacity of the Hopfi
model?

For b→0 and more than one memory pattern, we c
stabilize a two-cycle that describes the time dependenc
mt5(1/N)( ij i

mSi
t , i.e., the projection of the pattern vectorSW t

onto a stored patternjWm. Since the memory patterns are ch
sen randomly, the results are independent of the choic
jm. Figure 5 shows that the oscillating term not only raisesb
to the effective valuebu«u, as in the case of only one store
pattern considered above, but also has a stabilizing effec
the patterns such that the capacity increases up toa50.6.

For b→`, oscillating feedback leads again to a stabiliz
tion of the patterns but this time the effect is most pr
nounced for«522 ~see Fig. 6!. We can understand thi
from Fig. 1, where we see that«522 stabilizes all eigen-
valuesl in the range 12A2,l,11A2. This means that if
the stability matrix of a stored pattern (]Si

t12/]Sj
t )@jWm# that

can be computed directly from Eqs.~3.6! and is~because the
derivative is taken atjWm) independent oft contains eigenval-
ues larger than 1 such that the pattern becomes unstable,
the delay term with«522 makes these eigenvalues smal
than one such that the pattern becomes stable. In the Ap
dix we present an analytical computation of the capacity
the Hopfield model as a function of«. It shows that not only
‘‘fast noise generated by a finite temperature’’ but also ‘‘s
generated noise that stems from the uncondensed patte
@15# becomes suppressed by an oscillating delay term.
effect is strong enough to enhance the capacity of
Hopfield model by an order of magnitude.

FIG. 5. Enhancement of the capacity of the Hopfield model d
to periodic feedback for high temperatures. We start from a p
fectly aligned pattern, i.e.,m51. After 500 runs with different ini-
tial patterns we show the probabilityP(m,0.9) in percent that in
the long-time limitm becomes smaller thanm50.9, as a function
of a, for b50.2 and«5210 as compared to«50 andb52 @18#.
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6414 56H. G. SCHUSTER AND M. B. STEMMLER
In principle, oscillating delay terms could be realized b
logically. We envision the delayed feedback to be carried
inhibitory association fibers@18#. In the canonical microcir-
cuit model of cortex@19#, for instance, these inhibitory syn
apses are themselves subject to shunting inhibition.
character of the feedback will be oscillatory if the inhibitio
of these inhibitory synapses is periodic.

IV. STABILIZATION OF CHAOTIC SYSTEMS THAT
ARE DESCRIBED BY DIFFERENTIAL EQUATIONS

In this section we extend our results for maps to differe
tial equations. In order to keep things simple we first de
onstrate how one could stabilize an unstable fixed point o
single differential equation. It is understood that one ordin
differential equation cannot generate chaos@1#, but our re-
sults could then be transferred in a straightforward fashio
sets of three or more differential equations that are capab
producing chaotic behavior. Let us first try to stabilize t
unstable (Rel.0) fixed point of

ẋ5lx ~4.1!

at the origin by adding a delay term

ẋ5lx1«@x~ t !2x~ t2t!#, ~4.2!

with time-independent«and delay timet. With the ansatz
x;exp(gt) we findg5l1«@12exp(2gt)#. Figure 7 shows
the regions in complexl space for which Reg,0, i.e., for
which delay with constant« stabilizes the fixed point. It
follows that for Iml50 the unstable fixed point could not b
stabilized at all. Only for ImlÞ0, i.e., only if originally the
trajectory escaped from the fixed point in an oscillatory fa
ion, can we stabilize it in a, relatively small,l region. This
corresponds to Giona’s observation for discrete syste
where one could stabilize a fixed point with a constant de
term only if the original trajectory displayed oscillations d
to the negative sign of the local slope. It is shown in R

FIG. 6. Enhancement of the capacity of the Hopfield model d
to periodic feedback for low temperatures. We start from a perfe
aligned pattern (m51). After 500 runs we show the probabilit
P(m,0.9) in percent that in the long-time limitm becomes smaller
thanm50.9, as a function ofa, for b520 and«50 as compared
to b520 and«522.
-
y

e
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@20# that simply making« oscillating in Eq.~4.2! will not
help. Instead we have to add an oscillating velocity te
such that Eq.~4.1! becomes

ẋ5lx1« tẋ~ t2t! . ~4.3!

In Eq. ~4.3! « t changes periodically between zero and
constant value:« t50 for nt<t,(n11)t and« t5«Þ0 for
(n11)t<t,(n12)t, wheren50,2,4, . . . .

In order see that the the fixed point in Eq.~4.3! could
indeed be stabilized by an appropriate choice of«, we inte-
grate Eq. ~4.3! over two intervals oft. For nt<t,(n
11)t we obtain

x~ t !5x~nt!el~ t2nt!. ~4.4!

In order integrate Eq.~4.3! in the regime (n11)t<t

,(n12)t, we need to know the delay termẋ(t2t) only in
the previous time interval where« was zero. This yields

x@~n12!t#5elt~elt1l«!x@nt#. ~4.5!

In this way we reduced the solution of Eq.~4.3! to a map
that converges to the origin ifuelt(elt1l«)u,1. Note that
this requirement could always be met by a finite« value. We
shall see below that, as for maps, a single« value stabilizes
a whole range of unstablel values.

As an example, we tame the spatiotemporal chaos of
Kuramoto-Sivashinsky equation@8# with our method. Chaos
control in this context has been previously investigated
Petrov, Mihaliuk, Scott, and Showalter@21# without using
oscillating delayed feedback. The Kuramoto-Sivashins
equation is given by

w t1wwx1wxx1wxxxx50 ~4.6!

and describes the fluctuations in the~scaled! heightw(x,t) of
a thin fluid film that moves on an inclined plane under t
influence of gravity. The indices in Eq.~4.6! denote partial
derivatives with respect to timet and one-dimensional spac
x.

We choose periodic boundary conditions over a lengthL.
Linear stability analysis of the homogeneous statew50
yields, with the ansatzw(x,t);exp(2lt1kx), the stability
conditionl5k42k2.0. The spatially homogeneous state
unstable for all Fourier modes with wave vectorsuku,1. In
order to stabilize the homogeneous state we have to mak

e
ly

FIG. 7. Stability region of Eq.~4.1! for t51 and«522 in the
complexl plane. The region terminates at Rel52« and is peri-
odic in Iml. Note that the whole Rel axis is unstable.
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56 6415CONTROL OF CHAOS BY OSCILLATING FEEDBACK
eigenvaluesl within the interval 0,l,0.25. smaller than
zero. Note that the eigenvalues are all real, i.e., accordin
Fig. 7 a constant value of« will not work at all. By adding to
Eq. ~4.6! a periodic feedback term@as in Eq.~4.3#, we obtain

w t1wwx1wxx1wxxxx1« tw t
t2t50. ~4.7!

Figure 8 shows the stability region of Eq.~4.7!. The ho-
mogeneous state can be stabilized, for instance, by choo
«523, as shown in Fig. 9.

FIG. 8. Stability region of Eq.~4.3! in the «-l plane.

FIG. 9. Solution of the Kuramoto-Sivashinsky equation~4.6! as
a function of space~horizontal axis! and time starting from random
w(x,0) and periodic boundary conditions over an intervalL580.
~a! Without feedback control the spatially homogeneous state
unstable.~b! For periodic feedback with«523 andt55dt dis-
cretization steps,dt50.1, the homogeneous state becomes st
lized. The shading indicates the time intervals, of sizet, where the
feedback is switched on~gray! and off ~black!.
to

ing

V. SUMMARY

We have shown that fixed points of dynamical syste
described by high-dimensional maps or sets of differen
equations can be stabilized by periodic delayed feedback
the following, we briefly discuss the the influence of nois

If we add to the mapxt115lxt1« t(xt2xt21) a Gaussian
noise termh t with ^h th t&5s2, we obtain from the equa
tion of motion xt11 5lxt1« t(xt2xt21)1h t directly
limt→`^(xt)2&5ss2/(12G2) where G25l(l1«2«/l)
ands511(l1«)2. If we compare this to the situation with
«50, i.e., limt→`^(xt)2&5s2/(12l2), we see that the mea
squared fluctuations around the stabilized fixed point«
Þ0) are enhanced by a factors511(l1«)2. This is the
price we must pay for stabilization.

FIG. 10. Lyapunov functionL(m) of the Hopfield model as a
function of the overlap with a stored patternm for different values
of a. ~a! Without feedback:a varies asa50.05,0.1,0.12,0.14,0.2
between the bottom and the top curve. Note that the minimum
L(m) vanishes fora50.14. ~b! With periodic feedback and«5
22: a varies asa50.2,0.4,0.6,0.8,1 between the bottom and t
top curve. Note that the minimum inL(m) now persist up toa
51, but its stability~depths! is reduced as compared to the uns
bilized situation with«50 anda50.05, say.
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In conclusion, periodic delayed feedback overcomes
limitations of Giona’s theorem and offers the possibility
stabilize spatiotemporal patterns, opening the door to m
applications. One could speculate that the stabilizing com
nation of delay and oscillations, found above, might be o
of the reasons why both elements are so often presen
biological systems@22#.
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APPENDIX: THE CAPACITY OF THE STABILIZED
HOPFIELD MODEL

The dynamical equations~3.6! yield in the infinite-time
limit the two-cycle

S̄i5tanhF b

N(
m, j

j i
mj j

mSj G , ~A1!

Si5tanhF b

N(
m, j

j i
mj j

m@~11«! S̄j2«Sj #G . ~A2!

Proceeding as in Ref.@23#, we obtain for the projections
m5(1/N)( jj j

1Sj and m̄5(1/N)( jj j
1S̄j of the two-cycle on

the retrieval patternjW1 at timest andt11, respectively, and
for the self-generated ‘‘noise’’ termsr 5(1/a)(mÞ1(mm)2

and r̄ 5(1/a)(mÞ1@(11«)m̄m2«mm#2 in the zero tempera
ture limit (b→`) the coupled equations

m̄5erf~m/A2ar !, ~A3!

m5erf$@~11«!m̄2«m#/A2a r̄ %, ~A4!

r 5$@~11«!2Q̄212~11«!Q̄q̃#%/N2, ~A5!

r̄ 5„$~11«!21@~11«!Q̄2«#2

12~11«!@~11«!Q̄2«#q%…/N2, ~A6!

N511«Q̄2~11«!QQ̄, ~A7!

Q5A 2

par
expS 2

m2

2ar D , ~A8!
.

e

y
i-
e
in

aft

Q̄5A 2

pa r̄
expF2

@~11«!m̄2«m#2

2ar
G , ~A9!

q̃512um2mū. ~A10!

For um2m̄u!1, i.e., q̃>1, Eqs.~A5! and ~A6! for r and r̄

can be solved in terms ofQ andQ̄ as

A2ar 5A2a1
2

Ap
exp~2y2!, ~A11!

A2a r̄ 5A2a1
2

Ap
@~11«!exp~2x2!2« exp~2y2!#,

~A12!

where we introduced the reduced variablesx5m/A2ar and

y5@(11«)m̄2«m#/A2a r̄ . With these, Eqs.~A2! and~A3!
become

yFA2a1
2

Ap
@~11«!exp~2x2!2« exp~2y2!#G

~A13!
5~11«!erf~x!2« erf~y!,

xFA2a1
2

Ap
exp~2y2!G5erf~y!. ~A14!

By insertingx ~as a function ofy) from Eq. ~A14! into Eq.
~A13!, we obtain a single equation for the variabley, which
we write as

d

dy
F~y!50. ~A15!

Sincey5erf21(m), and the error function is monotonic~i.e.,
the relation betweeny and m is one to one!, Eq. ~A15! is
equivalent to

d

dm
L~m!50, ~A16!

whereL(m)5F@erf21(m)# is the Lyapunov function of the
Hopfield model. ThusL(m) can be plotted as a function o
m by integrating Eq.~A15!, which yieldsF(y), and using
m5erf(y). Figure 10 showsL(m) as a function ofa and«.
M.
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