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Control of chaos by oscillating feedback

H. G. Schustérand M. B. Stemmler
Computation and Neural Systems Program, California Institute of Technology 139-74, Pasadena, California 91125
(Received 16 August 1996; revised manuscript received 31 March) 1997

Parametric feedback control of chaos relies on detailed knowledge of the locations of unstable periodic
orbits. We show that unstable periodic orbits of dynamical systems with unknown locations but known
periodicity 7 can be stabilized by an oscillating feedback term proportionaf t!—x!~7), wherex! is the
location of the trajectory at timeande' is periodic in time. Periodic feedback overcomes the limitations of
Giona’s theoreniNonlinearity4, 911(1991)], which states that constant feedbdtck., a time-independemt)
can stabilize an unstable periodic orbitly if the stability matrix has no positive eigenvalues greater than
unity. As an application of oscillating feedback, we use it to stabilize the memory patterns in an associative
memory(Hopfield[Proc. Natl. Acad. Sci. USA9, 2554(1982); 81, 3088(1984]) network, thereby enhancing
the total capacity of the memory device. We extend our method to high-dimensional systems described by
differential equations; in this framework, it is possible to stabilize the spatiotemporal chaos generated by the
Kuramoto-Sivashinsky equatid. J. Sivashinsky and D. M. Michelson, Prog. Theor. PB@s2122(1980)].
[S1063-651X%97)10911-4

PACS numbe): 05.45+b, 47.20—k

I. INTRODUCTION knowledge of the chaotic system.
(i) The method generalizes easily to higher-dimensional
Many nonlinear dynamical systems display chfidsRe-  systems and can be applied to dynamical systems that are not
cently, a general approag¢B] to controlling chaos in physi- intrinsically chaotic but possess unstable fixed points into
cal systems has been proposed that is based on the existengkich one wants to trap the system. One example of a non-
of unstable periodic orbits within the strange attractor. Thechaotic system with unstable fixed points is the Hopfield
original technique, due to Ott, Grebogi, and Yorl@GY), model[7] of associative memory, in which the fixed points
relies on the local linearization of the Poincan@ap near an  of the dynamical system correspond to stored memory pat-
unstable periodic orb[2]. Once the local map is known, one terns. If the number of memory patterns is small, the trajec-
can apply linear feedback control to stabilize the orbit. Intory of the system will move from an arbitrary input pattern
principle, the method of OGY is applicable to any physicalto the closest fixed point, which is the best match to a
system as long as the iterates of the Poingaegp can be “memory.” Attempts to store too many memory patterns are
obtained[3]. Recently, Hunt{4] has demonstrated experi- thwarted by the fixed point&r memory patternsbecoming
mentally that changing the control parameter of the chaotiznstable. Our method stabilizes the fixed point closest to the
system in proportion to the difference between the desiredurrent trajectory, thereby increasing the number of patterns
orbit and the actual trajectory is sufficient to achieve robusthat can be stored and retrieved.
control. This form of parametric feedback control has been (iii) Our method, which will first be introduced for dy-
applied to several experimental systefisand underpinned namical systems described by maps, can be extended to sys-
theoretically[6]. However, in order to apply Hunt’'s method, tems described by differential equations. We will demon-
it is necessary to know the location of the orbit that onestrate that the spatiotemporal chaos generated by the
wants to stabilize or, if this is not the case, one could choos&uramoto-Sivashinsky equatiof8], which describes the
an arbitrary point on the attractor and stabilize the leastfluctuations in the height of a fluid film moving on an in-
unstable periodic orbit in its vicinity. In this article, we will clined plane under the influence of gravity, can be “tamed”
present a method for chaos control that is as simple as Huntlsy periodic feedback.
method but does not require knowledge of the orbit’s loca- As we will see in the following sections, our method con-
tion. Instead, the method will stabilize orbits of a prescribedsists of applying delayed feedback control to the system. In
periodicity. This approach is of some theoretical and practithe context of chaos control, delayed feedback was originally
cal importance for the following reasons. proposed by Pyraga®®] and has been applied to control
(i) The set of unstable periodic orbits is dense in the Poinehaos in neodymium-doped lasg¢d®]. The different point
caremap of a chaotic dynamical system. The locations ofof our method is to overcome an important limitation that
these orbits, starting with unstable cycles of period 2, traceccurs for delayed feedback control. As proved rigorously by
out the skeleton of the chaotic attractor. The control methodsiona [11], delayed feedback control will only workfor
described here allows one to find experimentally all unstableystems described by Poincameaps if the local stability
periodic orbits of a given periodicity without any prior matrix of the unstable periodic orbit that one wants to stabi-
lize has only negative unstable eigenvalues. Similar restric-
tions hold for systems described by differential equations. It
*Permanent address: Institutr fliheoretische Physik, Universita will be shown that these restrictions can be overcome by
Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany. modulating the feedback control periodically.
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In the following, we will first show how our method sta- 4
bilizes unstable fixed points in one-dimensional mé&psc. 3
II). Then we will apply the method to the Hopfield model
(Sec. Il and the Appendjx In Sec. IV, we will introduce 2
periodic feedback for higher-dimensional systems described 1
by differential equations and demonstrate the application of
periodically modulated, delayed feedback control to the w0
Kuramoto-Sivashinsky equation of fluid dynamics. We con- -
clude with a brief discussion in Sec. V. 5

Il. STABILIZATION OF UNSTABLE FIXED POINTS -3 ,

IN SYSTEMS DESCRIBED BY MAPS
3 -2 -1 0 1 2 3 4
We start from a one-dimensional map A
x”l:f(x‘), (2.2 FIG. 1. Stability region in thes,\ plane for periodic(shaded

area and nonperiodi¢area delineated by the solid linegedback
wheret is the discrete time, and linearize it in the vicinity of control.
an unstable fixed poimt* =f(x*). This leads to
xFt=)\x!, (2.6a
xtrl=\xt, (2.2
X2= N[N +e(A—1)]x4 (2.6b
where A = (d/dx)f(x*) such that|]A|>1. We can assume
without restricting our arguments that =0. In order to  As shown in Fig. 2x! jumps between two linear maps with
stabilize the fixed point, we add a perturbatiofx'—x'"') different slopes. The slope of the lower branch could, by an
to the map of Eq(2.1), which represents a delayed feedbackappropriate choice of, always be made small enough to
term that does not change the location of the fixed point bugnsure the stability ok* =0. This means formally that the
influences its stability, as has been observed by Pyri@jas effective slopex[\+&(A—1)]in the mapx!*?= yx! could
This modifies Eq(2.1) to always be made smaller than unity. The condition for stabil-
ity |y|<1 yields for the boundarieg.=+1

X I=f[x'+e(x'—x'"1)]. (2.3
=—(1+N)/N, e_=—(1+N\)/[A(N—D)].
Linearization around* =0 leads to o ( ) ¢ ( MM )] 2.7
X = e (X=X, 2.4 The stability region|y|<1 is shown as the shaded area

. . (with boundariese.) in Fig. 1. With oscillatory delayed
Giona [11] proved that the addition of delay terms of teegnack, the stability region extends into the region of posi-

arbitrary order to a map can only stabilize the fixed pointge )~ 1 A single value ofs can stabilize a range of un-
only if A<<0. An intuitive picture of why this is so can be giapie eigenvalues, which will become important for high-
drawn as follows: If the sign ok™ alternates on successive §imensional sytems where we want to stabilize a whole

. S :
|ter?_ttles because\ <0, then the stabilizing terms(X'  gpectrum of unstable values by a single control parameter
—X ") vanishes less rapidly and hence has more effect op 51

th?lstability ofx*, than forA >0, in which case botlt' and To stabilize higher-order unstable fixed points, one can
x'~1 converge with the same sign t5. If we make the add to the map*t=\x! a delayed feedback terms'(x'
ansatz x~y' in Eq. (2.4), we obtain y.=3{\(1+¢) —xt=7), wheree'=0 for 0<t<r ande'=¢ for t=17. In

+J[N(1+¢&)]?—4e\}. The requirement thaty|<1 leads analogy to Eq(2.6), we obtainx'* 7"1=yx! with y=\TT\

to the stability region delineated by the solid lines in Fig. 1., o (\ —1)]. A cycle of periodr is stable if| y|<1. Stabili-
The stability region is confined th<<1, in agreement with

Giona’'s theorem|[The delay term stabilizes the fixed point
for A\=<—1; for —1<A<1 the fixed point in Eq(2.4) is a
already stable foe=0.]

If we want to stabilize also fixed points with>1, we
must avoid a too rapid decay of the differenged—x!™1).
This could be achieved by making time dependent. The
simplest choice:'=0 fort odd ands'=¢+0 for t even will
allow stabilization of both positive and negatingd 12]. With |
this, Eq.(2.4) becomes T ‘ b

Xt+1

xtri=)\xt, (2.53

X2=Axt T L ag(xtT—xY), (2.5 FIG. 2. For periodic feedback control the trajectégptted ling
approaches the fixed point by jumping between two linear ni@ps
which can be rewritten as xFl=xx'and(b) x'*?=(A+re—g)x'*L.
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1 and the alignment osf“ to the local field becomes perfect.
0.8 Only a nonzero temperature, entering through the fagtor
’ =(1/T) in Eq. (3.1, will counteract the tendency of spins to
w 06 align perfectly.
0.4 The crucial feature of the symmetric Hopfield model is
0.2 that it admits a Lyapunov function, or generalized energy
function, that governs the dynamigg]. Continuing the anal-

-1.58 -1.31 ogy to a magnet, the alignment of spins parallel to their local

€ field lowers the total energy of the Hopfield model

FIG. 3. Oscillatory delayed feedback control of the twofold it-
erated logistic magf2(x)=r2x?(1—x)? for r=3.8. Displayed in N
Fh_e g_raph is tht_a _fr_actiorl_? o_f iterates_ that remain aft?g a random Lt=— 2 Jijsltst_ (3.4)
injection of an initial point into the interval=x* =10 < around i !
the fixed pointx* =1— (1/r) after ten iterations of the maig. The
slope of the mag? at the fixed poinx* =0.737 is\ =3.24; since
the slope is greater than unity, the map cannot be controlled byith each time step, such that™!<L". In the long-time
constant delayed feedback. Within the shaded area, in agreemedimit, the system moves to a stable state with minimal en-

yvith Eq. (2.7), the map controlled by oscillatory delayed feedback ergy. If the initial state of the Spin§° is close to one of the
Is absolutely stable. stored patterns, sa&l, then the system state will move to-

zation can always be achieved with an appropriate choice Ovyards the storedﬁ p.attern. To illustrate, we c9n3|der the sim-
e, as for simple fixed points, which have the periodicity Plest case, wherg! is the only pattern stored in the network
-1 and thus;; = (1IN) £ . In the zero-temperature limit
As a straightforward application of the method, we use
periodic feedback to stabilize the unstable fixed point of the N
twofold iterated logistic map, which could not be stabilized Ltz — E J. it
H ’ H .~ =1
by constant delay terms because of Giona’s theorem. Figure ij=1
3 shows the fraction of iterates that, after the starting pdint

had been injected randomly into the interva#x* + 10 2, 1 o 1dctet 1 o et 2_ 1 - a0
remained withirl . There exists a finite range efvalues that T Niél §6SS=g Z‘l 65| =-NES)
stabilize the fixed point completely. For unmodulated feed-

back the fraction of iterates that remain in the interias 3.9
below 1

and we can see directly that the minimal energy is achieved
Il STABILIZATION OF PATTERNS if the vectorS'=(S, ... Sy) points parallel(or antiparal-

IN THE HOPFIELD MODEL 21 .
lel) to the patterné™. In other words, the minimum-energy
The symmetric Hopfield moddl7] is a variation on the configuration lim_ L' corresponds to a stored pattern or

Ising model for simple magents with=1,... N graded memory of the network. Lyapunov functions also exist for
spins S connected by an interaction matrixJ;; Hopfield models at nonzero temperatures.
=(UN)Z ,&&. The matrixJ;; storesp=1, ... p random Generalizing Eq(2.3) to N dimensions, we introduce de-
patterns &*=+1 and is by construction symmetrig; layed feedback into the Hopfield model as
=Jji. The patternsf“ are known as memory patterns.

Starting from an arbitrary initial patter&® (with —1 N
=<S’<1), the Hopfield model evolves according to the dy- Sl”l=tam‘{,82 J”st}, (3.69
namical ruleq14] =1

S*t=tanH ght], (3.0 N
where SHZItam{ﬁ;l Jil(1+e)§ —eS]]|, (3.6D
1 N
hi=—>, J;;S 3.2
' N,Z'l el 32 where g is the inverse temperature. As in E§.5), the de-

layed feedback term has been made oscillatory.

is the local “magnetic” field for theith spin, generated by In the original Hopfield model, the fact that*1<L! im-
all other spins through the interaction matdx . At each plies that only simple fixed points are allowed to exist. With
time step of the dynamics, the sgghwill tend to align itself  delayed feedback, stable two-cycles become possible in the
parallel to the local field. In fact, in the limit gB—o°, Eq.  Hopfield model[15], in addition to the usual stable fixed
(3.1 becomes points. To show that the oscillating delay term can stabilize

1 . two-cycles, we construct a Lyapunov functianfor two-

Si" =sgrihj] (3.3 cycles, following the seminal work of AmtL6]:
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FIG. 4. Lyapunov functiorh. (m)of the Hopfield model with one 204 ,,/ /
stored pattern. The dotted lines correspond.¢m) without feed- /’
back for =0.5. The full lines correspond tb(m) for the same . - ' .
values ofg after periodic feedback with=—5 has been switched 00.0 0.2 0.4 0.6 0.8 1.0
on. o=p/N

e FIG. 5. Enhancement of the capacity of the Hopfield model due
(1+e)S "~ ES}} to periodic feedback for high temperatures. We start from a per-
fectly aligned pattern, i.,em=1. After 500 runs with different ini-
tial patterns we show the probabili§(m<0.9) in percent that in
the long-time limitm becomes smaller tham=0.9, as a function
of «, for 8=0.2 ands = — 10 as compared to=0 andg=2 [18].

L:izj J”St

—%(1+a)2i In

Cos?‘( BE JijS}>
]

associative memory device useless. In this case, the Hopfield
model evolves towards an unintelligible superposition of
memory patternga spin-glass stateor to a paramagnetic

To get acquainted with the influence of the delay termsstate which has, on average, no overlap with any stored pat-
we first investigate the Hopfield model with only one storedtern &~

_lgi n NEY

cosr(ﬁZ Jij[(l+£)5}+1—83}])
J

patternél. By introducing the overla;rxf:(l/N)Eigil&t be- Since delayed feedback stabilizes unstable fixed points,
tween the state vect@ and the patterg?, the equations of One might expect that such feedback could increase the ca-
motion reduce to pacity of the Hopfield model. The net effect of constant,
nonoscillatory delay terms in the Hopfield model is to
m'*1=tanh gm"), (3.8  weakly stabilize stored patteri$7]. But how does oscillat-
ing delayed feedback change the capacity of the Hopfield
m*2=tan{ B[ (1+&)m " 1—em']} (3.8  model?
For B—0 and more than one memory pattern, we can
and the Lyapunov functioh becomes stabilize a two-cycle that describes the time dependence of

m'=(1/N)Z;£*S, i.e., the projection of the pattern vecsr

L=(1+e)mtanh Sm)— fmz_ (1te) onto a stored patteré”. Since thg memory patterns are qho—
2 B sen randomly, the results are independent of the choice of
1 &#. Figure 5 shows that the oscillating term not only raiSes
X In[2costsm)]— —In(2cosh to the effective valugg|e|, as in the case of only one stored
B pattern considered above, but also has a stabilizing effect on
X{B[(1+e)tani( fm) —em]}). 3.9 the patterns such that the capacity increases up-t0.6.

For B—, oscillating feedback leads again to a stabiliza-

Figure4sh0w$_ for different values oﬁ ande. We note tion of the patterns but this time the effect is most pro-
that for high temperaturesg(—0) the choice of a large hounced fore=—2 (see Fig. §. We can understand this
enough(negative ¢ will always stabilize a two-cycle: For from Fig. 1, where we see that=—2 stabilizes all eigen-
B<1, Eq.(3.89 yieldsm'" 1= gm' and Eq.(3.8b becomes Vvalues\ in the range * J2<A<1+ /2. This means that if
m'"?=tanH{ B B(1+&) —s]m}=tanf B(—e)m] for —e>1.  the stability matrix of a stored pattera$**/9S)[ €] that
This means that larg@egative ¢ values lead to an effective can be computed directly from Eq&.6) and is(because the

Betr=PB(—¢) that compensates for the small value of thegerivative is taken a*) independent of contains eigenval-
original . _ o ues larger than 1 such that the pattern becomes unstable, then
The use of the Hopfield modelﬁas an associative memoryhe delay term withe = — 2 makes these eigenvalues smaller
is limited by the number of pattergs' that can be stored and than one such that the pattern becomes stable. In the Appen-

retrieved relative to the total number of spins. The ratio dix we present an analytical computation of the capacity of
=p/N is commonly known as the capacity, wheyes the  the Hopfield model as a function ef It shows that not only
number of memory patterns amdl the number of spins. At “fast noise generated by a finite temperature” but also “self
zero temperaturef— ), the original Hopfield model has a generated noise that stems from the uncondensed patterns”
capacity ofa=0.138 in the limit adN— . Storing a number [15] becomes suppressed by an oscillating delay term. The
of patterns greater thgm= N has catastrophic effects: The effect is strong enough to enhance the capacity of the
memory patterns become unstable fixed points, rendering thdopfield model by an order of magnitude.
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FIG. 6. Enhancement of the capacity of the Hopfield model due[zo] that simply makinge oscillating in Eq.(4.2) will not

to periodic feedback for low temperatures. We start from¢':1perfectlyne|p Instead we have to add an oscillating velocity term
aligned pattern rh=1). After 500 runs we show the probability SUCH that Eq(4.1) becomes

P(m<0.9) in percent that in the long-time limit becomes smaller
thanm=0.9, as a function o, for =20 ande =0 as compared

10 B=20 ands - —2. X=AX+e&'X(t— 7). 4.3

. _ _ . In Eq. (4.9 &' changes periodically between zero and a
In principle, oscillating delay terms could be realized bio- constant values'=0 for nr<t<(n+1)r ands'=g+0 for
logically. We envision the delayed feedback to be carried by(m_ 1)r=t<(n+2)7, wheren=0,2,4 . . . .
inhibitory association fiberkl8]. In the canonical microcir- In order see that'the the fixe’d,point in E@.3 could
cuit model of corte19], for instance, these inhibitory syn- indeed be stabilized by an appropriate choice: ofve inte-

apses are themselves subject to shunting inhibition. ThSrate Eq.(4.3 over two intervals ofr. For nr<t<(n
character of the feedback will be oscillatory if the inhibition T 1)r We.ob:tain '

of these inhibitory synapses is periodic.
x(t)=x(n7)eMt="7, (4.4

IV. STABILIZATION OF CHAOTIC SYSTEMS THAT . . .
ARE DESCRIBED BY DIFFERENTIAL EQUATIONS In order integrate Eq(4.3 in the regime (+1)7<t
<(n+2)7, we need to know the delay temtt— 7) only in

. In this section we extend our re_sults f(.)r maps to_dlfferen-the previous time interval where was zero. This yields
tial equations. In order to keep things simple we first dem-

onstrate how one could stabilize an unstable fixed point of a x[(n+2)7]=er"(e*+\e)x[n7]. 4.5
single differential equation. It is understood that one ordinary
differential equation cannot generate chab but our re- In this way we reduced the solution of E¢.3) to a map

sults could then be transferred in a straightforward fashion tehat converges to the origin j&*"(e* "+ \&)|<1. Note that
sets of three or more differential equations that are capable @his requirement could always be met by a firitgalue. We
producing chaotic behavior. Let us first try to stabilize theshall see below that, as for maps, a singlealue stabilizes

unstable (Re>0) fixed point of a whole range of unstable values.
As an example, we tame the spatiotemporal chaos of the
X=\X 4.2 Kuramoto-Sivashinsky equatid®] with our method. Chaos
control in this context has been previously investigated by
at the origin by adding a delay term Petrov, Mihaliuk, Scott, and Showalt¢21] without using

oscillating delayed feedback. The Kuramoto-Sivashinsky

K= Ax-+ e[ X() —x(t— )], 4.2 equation is given by

o1t POt Oyt Pxxxx= 0 (4.6
with time-independentand delay timer. With the ansatz
X~exp(t) we find y=\+e[1—exp(—yn)]. Figure 7 shows and describes the fluctuations in ttsealed heighte(x,t) of
the regions in complex space for which Re<0, i.e., for  a thin fluid film that moves on an inclined plane under the
which delay with constant stabilizes the fixed point. It influence of gravity. The indices in E¢4.6) denote partial
follows that for Im\ =0 the unstable fixed point could not be derivatives with respect to timeand one-dimensional space
stabilized at all. Only for Im#0, i.e., only if originally the  X.
trajectory escaped from the fixed point in an oscillatory fash- We choose periodic boundary conditions over a lergth
ion, can we stabilize it in a, relatively smal, region. This  Linear stability analysis of the homogeneous state 0
corresponds to Giona's observation for discrete systemgields, with the ansatzp(x,t)~exp(—At+kx), the stability
where one could stabilize a fixed point with a constant delaycondition\ =k*—k2>0. The spatially homogeneous state is
term only if the original trajectory displayed oscillations due unstable for all Fourier modes with wave vectfk<1. In
to the negative sign of the local slope. It is shown in Ref.order to stabilize the homogeneous state we have to make all
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V. SUMMARY

We have shown that fixed points of dynamical systems
described by high-dimensional maps or sets of differential
equations can be stabilized by periodic delayed feedback. In
the following, we briefly discuss the the influence of noise.

If we add to the map't1=ax'+e!(x'—x'"1) a Gaussian
noise termz' with (7'5")=0o?, we obtain from the equa-
tion of motion x'*! =Ax'+&'(x'—x'"1)+ ' directly
im_((x)2)=sc?/(1-T?) where T'?=A(\+&—s&/\)
ands=1+(\+¢)2. If we compare this to the situation with
- £=0,i.e., im_.{(x")?=0a?/(1—\?), we see that the mean
1 2 ' squared fluctuations around the stabilized fixed point (

A #0) are enhanced by a factee=1+ (A +¢)2. This is the
price we must pay for stabilization.

FIG. 8. Stability region of Eq(4.3) in the -\ plane.

eigenvalues\ within the interval 6<\<<0.25. smaller than
zero. Note that the eigenvalues are all real, i.e., according to
Fig. 7 a constant value af will not work at all. By adding to
Eq. (4.6) a periodic feedback terfras in Eq.(4.3], we obtain

Q1 oyt Pyt ‘Pxxxx+8t‘PE_T:0- 4.7
Figure 8 shows the stability region of E@.7). The ho- -0
mogeneous state can be stabilized, for instance, by choosing
e=—3, as shown in Fig. 9.
0.5 1
(a) m
-

0.5 1
(b) m

FIG. 10. Lyapunov functiori.(m) of the Hopfield model as a
FIG. 9. Solution of the Kuramoto-Sivashinsky equat{dt6) as  function of the overlap with a stored pattemfor different values
a function of spac¢horizontal axi$ and time starting from random of «. (@) Without feedback« varies asa=0.05,0.1,0.12,0.14,0.2
¢(x,0) and periodic boundary conditions over an interkat 80. between the bottom and the top curve. Note that the minimum of
(a) Without feedback control the spatially homogeneous state i4 (m) vanishes fora=0.14. (b) With periodic feedback and=

unstable.(b) For periodic feedback witk=—3 and r=56t dis- —2: «a varies asa=0.2,0.4,0.6,0.8,1 between the bottom and the
cretization stepsgt=0.1, the homogeneous state becomes stabitop curve. Note that the minimum ib(m) now persist up tox
lized. The shading indicates the time intervals, of siz&vhere the =1, but its stability(depths is reduced as compared to the unsta-

feedback is switched ofgray) and off (black). bilized situation withe =0 anda=0.05, say.
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In conclusion, periodic delayed feedback overcomes the — 2

Lo o _— — 2 [(1+e)m—em]

limitations of Giona’s theorem and offers the possibility to Q= —exg — , (A9)

stabilize spatiotemporal patterns, opening the door to many Tar 2ar

applications. One could speculate that the stabilizing combi- L

nation of delay and oscillations, found above, might be one gq=1—|m-m|. (A10)

of the reasons why both elements are so often present in

biological system$22].
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APPENDIX: THE CAPACITY OF THE STABILIZED
HOPFIELD MODEL

The dynamical equation&.6) yield in the infinite-time
limit the two-cycle

: (A1)

§=tanr{§2 gers,

M)

. (A2)

si=tanr{§2 e (1+e)S;—eS)]
i)

Proceeding as in Ref23], we obtain for the projections

m=(1N)2;£'S; andm=(1/N)Z;£'S; of the two-cycle on
the retrieval patterg® at timest andt+ 1, respectively, and
for the self-generated “noise” terms=(1/a)2#¢1(mﬂ)2
andr :(1/a)E,H&1[(1+s)mﬂ—smﬂ]2 in the zero tempera-
ture limit (8— ) the coupled equations

m=erf(m/\2ar), (A3)
m=erf{[(1+&)m—em]/\2ar}, (A4)
r={[(1+£)2Q%+2(1+&)Qq]}/N?, (A5)
r=((1+e)?+[(1+e)Q—e]?
+2(1+&)[(1+&)Q—e]ql)/N?, (AB)
N=1+£Q—(1+¢)QQ, (A7)
B [ 2 '{ m?2
Q— mex _ﬁ' (A8)

For|m—m|<1, i.e.,q=1, Eqs.(A5) and(A6) for r andr
can be solved in terms @ andQ as

(A11)

(2ar=\2a+ \/%exp(—yz),

V2ar =\2a+ %—[(Hs)eXp(—xz)—s exp(—y?)],
T
(A12)

where we introduced the reduced variabtesm/+/2ar and

y=[(1+&)m—em]/V2ar . With these, Eqs(A2) and(A3)
become

2
20+ —[(1+e)exp —x?) —¢ exp(—yz)]}

1w
(A13)
=(1+e)erf(x)—¢erf(y),
X| V2a+ iexp(—yz) =erf(y). (A14)
J

By insertingx (as a function ofy) from Eq. (A14) into Eq.
(A13), we obtain a single equation for the varialylewhich
we write as

d
d—yCD(y) =0. (A15)
Sincey=erf-1(m), and the error function is monotonice.,

the relation betweery andm is one to ong Eq. (A15) is
equivalent to

d
—L(m)=0,

9 (A16)

whereL(m)=®[erf 1(m)] is the Lyapunov function of the
Hopfield model. Thud. (m) can be plotted as a function of
m by integrating Eq.(A15), which yields®(y), and using
m=erf(y). Figure 10 shows (m) as a function ofx ande.
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